Exercise 1

R1233zd(E) is an HFO (hydro-fluoro-olefin) that is used as a replacement for R123 in centrifugal chillers offering better capacity and efficiency similar to R-123. It is used in low-pressure centrifugal chillers, which are most often used to cool large buildings. Obtain the thermodynamic variables for the saturation states at $-40^{\circ} \mathrm{C}$, and in states of compressed liquid at $-20^{\circ} \mathrm{C}$ and 101325 Pa and superheated steam at $120^{\circ} \mathrm{C}$ and 101325 Pa . Obtain all the thermodynamic diagrams.

Thermophysical Properties of Chemicals \& Hydrocarbons:

 Thermodynamic Process

THERMOProcess is a simulator of thermodynamic processes in general, which makes use of correlations and the principles of Thermodynamics to generate robust algorithms for the prediction of thermodynamic and transport properties of the most common substances used in engineering, with modules that solve basic problems of Thermodynamics applied to engineering, in closed and open systems. This program is a powerful tool in the accomplishment of these tasks. It is an easy-to-use software package that covers the resolution of practically all problems in the field of Applied Thermodynamics.

	Refrigerant	\checkmark
	WATER	\checkmark
	R236fa	-
	R245fa	
	R404a	
	R407c	
Hydrocarbon	R410a	
Hydrocarbon	R507a	
Refrigerant	R1233zd(E)	
Gases	R1234yf	
Brines and solutions	R1234ze(E)	
Synthetic liquids	R1234ze(Z)	-

Information \& Application

R1233zd(E) is a HFO. It is suitable for new industrial and building air conditioning installations in which chilled water or intermediate fluids are used in high power systems equipped with centrifugal compressors (with 1 or more stages) in which R-123 has been replaced and in new installations designed for said fluid. This refrigerant can be also used for foam blowing applications. ODP $=0$, GWP low (1 to 4.5) and non-flammable.

Dead state		
Pressure	$101325.00 \div$	Pa
Temperature	$25.00 \div$	${ }^{\circ} \mathrm{C}$
Internal energy	182.59	$\mathrm{kJ} / \mathrm{kg}$
Enthalpy	200.84	$\mathrm{kJ} / \mathrm{kg}$
Entropy	0.689	$\mathrm{kJ} / \mathrm{kg}$

Gas Constant	Accentric Factor	Specific Gravity (20

	Critical-point		Triple-point	
Density	478.92	$\mathrm{kg} / \mathrm{m}^{3}$	1488.79	$\mathrm{kg} / \mathrm{m}^{3}$
Specific volume	0.00209	$\mathrm{m}^{3} / \mathrm{kg}$	0.00067	$\mathrm{m}^{3} / \mathrm{kg}$
Internal energy	227.47	$\mathrm{kJ} / \mathrm{kg}$	-118.18	$\mathrm{kJ} / \mathrm{kg}$
Enthalpy	234.93	$\mathrm{kJ} / \mathrm{kg}$	-118.16	$\mathrm{kJ} / \mathrm{kg}$
Entropy	0.62337	$\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	-0.49202	$\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
Compressibility factor	0.2667		0.0000	

Saturation
C Pressure

(c Temperature

$$
-40.0000 \div{ }^{\circ} \mathrm{C}
$$

Ts $\underset{\text { Technical Software Suite }}{\text { ThermoSuite }}$

Thermodynamic Properties	Saturated liquid	Saturated vapor	Units
Temperature	-40	-40	${ }^{\circ} \mathrm{C}$
Pressure	5552.53	5552.53	Pa
Density	1408.8	0.375648	$\mathrm{~kg} / \mathrm{m}^{3}$
\quad Specific volume	0.000709823	2.66206	$\mathrm{~m}^{3} / \mathrm{kg}$
\quad Internal energy	-71.4461	139.029	$\mathrm{~kJ} / \mathrm{kg}$
Enthalpy	-71.4422	153.811	$\mathrm{~kJ} / \mathrm{kg}$
Entropy	-0.273156	0.692972	$\mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
\quad Exergy	14.5847	-48.2136	$\mathrm{~kJ} / \mathrm{kg}$
Gibbs function	-7.75579	-7.75579	$\mathrm{~kJ} / \mathrm{kg}$
\quad Compressibility factor	0.000265334	0.995087	
\quad Surface tension	0.0224839	0.0224839	$\mathrm{~N} / \mathrm{m}$

Thermal Transport Properties	Saturated liquid	Saturated vapor	Units
Thermal conductivity	0.102653	0.00840638	$\mathrm{~W} / \mathrm{mK}$
Dynamic viscosity	0.000848755	$8.58144 \mathrm{e}-06$	$\mathrm{~kg} / \mathrm{m} \mathrm{s}$
Kinematic viscosity	$6.02466 \mathrm{e}^{-07}$	$2.28443 \mathrm{e}-05$	$\mathrm{~m}^{2} / \mathrm{s}$
Isobaric specific heat	1.22156	0.721547	$\mathrm{~kJ} / \mathrm{kgK}$
Isochoric specific heat	0.656219	0.656219	$\mathrm{~kJ} / \mathrm{kgK}$
Thermal difussivity	$5.96498 \mathrm{e}-08$	$3.10144 \mathrm{e}-05$	$\mathrm{~m}^{2} / \mathrm{s}$
Prandtl number	10.1	0.736573	$[--]$

Saturated Mixture (Liquid+Vapor): Thermodynamic and Thermal Transport Properties

Thermodynamic Properties	Value	Units
Temperature	-40	${ }^{\circ} \mathrm{C}$
Pressure	5552.53	Pa
Density	0.536579	$\mathrm{~kg} / \mathrm{m}^{3}$
Specific volume	1.86366	$\mathrm{~m}^{3} / \mathrm{kg}$
Internal energy	75.8867	$\mathrm{~kJ} / \mathrm{kg}$
Enthalpy	86.2347	$\mathrm{~kJ} / \mathrm{kg}$
Entropy	0.403133	$\mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Exergy	-29.3741	$\mathrm{~kJ} / \mathrm{kg}$
Gibbs function	-7.75579	$\mathrm{~kJ} / \mathrm{kg}$
Compressibility factor	0.696641	$[--]$
Surface tension	$0.0224839 \mathrm{~N} / \mathrm{m}$	

Thermal Transport Properties	Value	Units
Thermal conductivity	0.0366804	$\mathrm{~W} / \mathrm{mK}$
Dynamic viscosity	0.000260634	$\mathrm{~kg} / \mathrm{m} \mathrm{s}$
Sinematic viscosity	$1.61718 \mathrm{e}-05$	$\mathrm{~m}^{2} / \mathrm{s}$
Kinobaric specific heat	0.87155	$\mathrm{~kJ} / \mathrm{kgK}$
Isobs		
Isochoric specific heat	0.656219	$\mathrm{~kJ} / \mathrm{kgK}$
Thermal difussivity	$2.17279 \mathrm{e}-05$	$\mathrm{~m}^{2} / \mathrm{s}$
Prandtl number	3.54562	

Thermodynamic Properties	Value	Units
Temperature	-20	o
Pressure	101325	Pa
Density	1365.9	$\mathrm{~kg} / \mathrm{m}^{3}$
Specific volume	$0.000732119 \mathrm{~m}^{3} / \mathrm{kg}$	
Internal energy	-47.0676	$\mathrm{~kJ} / \mathrm{kg}$
Enthalpy	-46.9934	$\mathrm{~kJ} / \mathrm{kg}$
Entropy	-0.172832	$\mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Exergy	9.12196	$\mathrm{~kJ} / \mathrm{kg}$
Gibbs function	-3.24085	$\mathrm{~kJ} / \mathrm{kg}$
Compressibility factor	0.00459947	
Surface tension	0.0198596	NJ / m

Thermal Transport Properties	Value	Units
Thermal conductivity	0.0955975	$\mathrm{~W} / \mathrm{mK}$
Dynamic viscosity	0.000600435	$\mathrm{~kg} / \mathrm{m} \mathrm{s}$
Kinematic viscosity	$4.3959 \mathrm{e}-07$	$\mathrm{~m}^{2} / \mathrm{s}$
Isobaric specific heat	1.22016	$\mathrm{~kJ} / \mathrm{kgK}$
Isochoric specific heat	0.878454	$\mathrm{~kJ} / \mathrm{kgK}$
Thermal difussivity	$5.73604 \mathrm{e}-08$	$\mathrm{~m}^{2} / \mathrm{s}$
Prandtl number	7.66365	$[--]$

(Tp) ThermoProcess

Thermodynamic Properties	Value	Units
Temperature	120	o
Pressure	101325	Pa
Density	4.10602	$\mathrm{~kg} / \mathrm{m}^{3}$
Specific volume	0.243545	$\mathrm{~m}^{3} / \mathrm{kg}$
Internal energy	259.315	$\mathrm{~kJ} / \mathrm{kg}$
Enthalpy	283.992	$\mathrm{~kJ} / \mathrm{kg}$
Entropy	0.930279	$\mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Exergy	11.2143	$\mathrm{~kJ} / \mathrm{kg}$
Gibbs function	-81.7476	$\mathrm{~kJ} / \mathrm{kg}$
Compressibility factor	0.9852	
Surface tension	0.0034454	$\mathrm{~N} / \mathrm{m}$

Thermal Transport Properties	Value	Units
Thermal conductivity	0.0183186	$\mathrm{~W} / \mathrm{mK}$
Dynamic viscosity	$1.46626 \mathrm{e}-05$	$\mathrm{~kg} / \mathrm{m} \mathrm{s}$
Kinematic viscosity	$3.57099 \mathrm{e}^{-06}$	$\mathrm{~m}^{2} / \mathrm{s}$
Isobaric specific heat	0.930478	$\mathrm{~kJ} / \mathrm{kgK}$
Isochoric specific heat	0.861956	$\mathrm{~kJ} / \mathrm{kgK}$
Thermal difussivity	$4.79475 \mathrm{e}-06$	$\mathrm{~m}^{2} / \mathrm{s}$
Prandtl number	0.744771	$[--]$

It is useful to plot the changes in the state of a substance during a thermodynamic process. On the following figures it shows the types of plots that are used to describe changes of state. It is possible to perform a series of processes, in which the state is changed during each process, but the gas eventually returns to its original state. Such a series of processes is called a cycle and forms the basis for understanding engines.

Ts) ThermoSuite

τ_{δ}. ThermoSuite
Technical Software Suite

Ts) ThermoSuite

Technical Software Suite

$8 t 8 \mathrm{~L}^{-}$
Etiol－
8\＆ $29-$
てどっで
$\varepsilon L \varepsilon ¢$
$8 L \cdot L G$
ャ868
68 LZL
$\downarrow 6 ¢ 9 \downarrow$
$00 \vdash 02$
90 でて
01082
圷

Ts ．ThermoSuite
Technical Software Suite

(Tp) ThermoProcess
Ts) ThermoSuite
Technical Software Suite

τ_{δ}. ThermoSuite
Technical Software Suite

τ_{δ} ．ThermoSuite
Technical Software Suite

Ts) ThermoSuite

Ts) ThermoSuite

(Tp) ThermoProcess
Ts) ThermoSuite

τ_{δ} ThermoSuite
Technical Software Suite

Technical Software Suite

