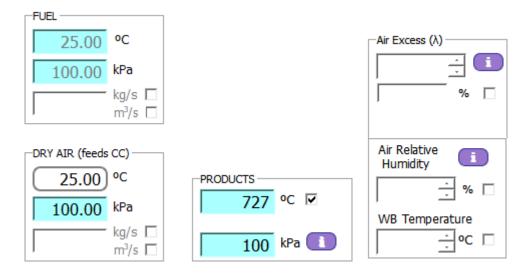
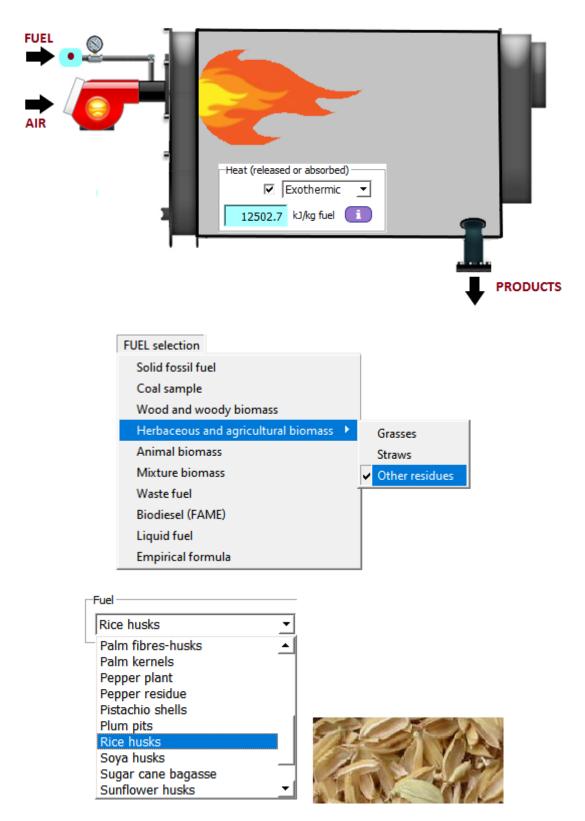


Exercise 2 (biomass)


A solid fuel (rice husks) is burned in a non-adiabatic furnace. Knowing that dry air and fuel enter in standard conditions (25°C and 1 atm) and the flue-gas leaves at 727°C. The heat released to the environment is approximately 12502.7 kJ/kg of fuel.

Decide:

- a) Excess air coefficient assuming rich combustion
- b) Excess air coefficient assuming poor combustion
- c) Dry and wet combustion products
- d) Dew point temperature of combustion products
- e) Calorific powers
- f) Efficiency
- g) Irreversibility
- h) Ostwald diagram
- i) Kissel diagram



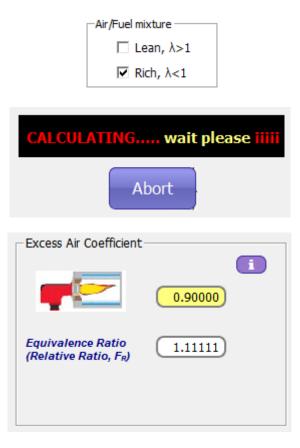
Solution by means THERMOCombustion:

Biomass is used as a renewable solid fuel on power plants to provide CO₂-neutral electricity and heat, where mainly woodand, in some cases, also straw have been applied in recent years. Biomass combustion has mainly been performed in grate boilers; however, wood and straw are used as fuels in suspension-fired power-plant boilers.

<u>Molar An</u> mol/kg fuel	alysis Molar ratio %	Ultimate Analysis Mass ratio %	To estimate	FUI	L	
30.08650	43.99371	36.1369	С	CARBON	•	
22.18016	32.43274	4.4713 🔅	H ₂	HYDROGEN	•	
0.20933	0.30609	0.5864	N ₂	NITROGEN	-	
10.01003	14.63707	32.0321 🛨	O ₂	OXYGEN	-	i
0.01827	0.02672	0.0586 🛨	S	SULPHUR	•	
5.88389	8.60366	10.6000 ≑	H₂O	MOISTURE	-	
14.62241	g/mol (as AF)	16.1000 🛨	ASH	ASH	-	i
15.99890	g/mol (as DAF)	0.0880 ≑	Cl	CHLORINE	-	
As received	• i	(100.0733) To	tal (%)			

Rice husk is the main byproduct of industrial processing of rice, and is a widely used byproduct in worldwide as biomass in energy production, reducing environmental impacts associated with improper disposal. Rice husk is the most prolific agricultural residue in rice producing countries around the world. It is one of the major by-products from the rice milling process and constitutes about 20% of paddy by weight. Rice husk, which consists mainly of lingo-cellulose and silica, is not utilized to any significant extent and has great potential as an energy source.

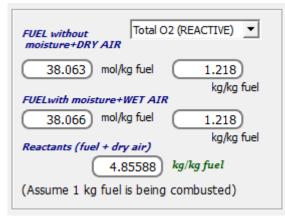
The ash generated in rice husk combustion has potential economic applications in a variety of sectors. However, the properties of rice husk ash are strongly dependent on the combustion method used. Rice is the second most consumed food item worldwide, with annual global demand of approximately 471 million tons and mean per capita consumption around 57 kg year. Accounting for roughly 20% of the bulk grain weight, rice husk is the most representative byproduct of industrial processing of rice.


- EMPIRICAL FO	DRMULA			i	1
C	н ()	N	S	
3.009	4.436	2.002	0.042	0.002	
Number of times the	proportion is repeated	d: 1 🛨 🔽	Unknown		
Molecular formula	Normalized form	Formula know	wn		
				Solid fuel	-

PRODUCTS 1 - C	Hydrogen in the products There is hydrogen Water gas shift reaction $CO + H_2O \cong CO_2 + H_2$ C User Equilibrium temperature K _p = Molar ratio H2/CO 0.00000 $\frac{1}{2}$	REFUSE Uncoked Coal Uncoked Coal FC 0.0 ÷ ASH 0.0 ÷ VM 0.0 ÷ Total (%)
----------------	--	--

Through an iterative process applied to the energy balance, previously determined the enthalpy of biomass formation, the software determines that variable not defined in the initial menu (coefficient of excess air, heat exchanged, temperature of combustion products), in this case the coefficient of excess air. It is necessary to know a priori if the air-fuel mixture is rich or lean (both cases have been done in this problem).

Flue gas (combustion products) composition is significantly affected by the combustion conditions. Where combustion takes place in complete, oxidizing gas species such as CO_2 , O_2 , SO_2 , and H_2O . Neutral complete combustion is termed here when carbon and hydrogen in fuel is totally oxidized to carbon dioxide and water vapor, and no additional oxygen is present in the flue gases. In contrast, when combustion reactions proceed in air-deficient conditions, reducing gas species such as CO and H_2 . This last situation can also occur even with extra air in the combustion


FLUE G	AS (Combust	On wet basis	On dry basis		
	mol/kg fuel	🗌 kg/kg fuel	Mole %	Mass %	
CO2	23.84962	1.04962	14.5448	22.3542	
CO	6.23688	0.17470	3.8036	3.7207	
H ₂ O	28.05165	0.50536	17.1074	10.7629	
N ₂	105.79256	2.96362	64.5180	63.1175	
O ₂					
SO ₂	0.01827	0.00117	0.0111	0.0249	
H ₂					
Ar					
HC	0.02468	0.00090	0.0151	0.0192	
TOTAL	163.9736	4.6954	100.00 %	(100.00) %	
Water Dew Point T ² (and Pset) H ₂ O (liquid) mol/mol fuel					
56.73 °C 17.11 kPa % kg/kg fuel					

The dew point is the temperature where air is no longer capable of holding the water vapor that is contained within it. At the dew point temperature, water vapor condenses into liquid water. At all times, the dew point temperature is equal to or less than the air temperature. We can observed that this temperature is 56.73°C. A thorough knowledge about dew point temperature is very important in various industries because moisture can affect corrosion rates.

FLUE GAS (Combustion Products)			On wet basis	On dry basis
	mol/kg fuel	🗌 kg/kg fuel	Mole %	Mass %
CO2	23.84962	1.04962	17.5466	25.0506
CO	6.23688	0.17470	4.5886	4.1695
H ₂ O				
N ₂	105.79256	2.96362	77.8333	70.7308
O ₂				
SO ₂	0.01827	0.00117	0.0134	0.0279
H ₂				
Ar				
HCl	0.02468	0.00090	0.0182	0.0215
TOTAL	135.9220	4.1900	100.00 %	(100.00) %

Air/fuel ratio (dry air)					
Theoretical	Actual	AIR 🔻			
Dry air	Dry air				
148.500	133.649	mol/kg fuel			
4.28432	3.85588	🔲 kg/kg fuel			

 Experimental correlations (mass fractions)
Burnham: C,H,N,O,S
(Based on the dry and mineral matter free elemental fuel composition
Lower Heating, LHV Higher Heating, HHV
(DAF) 18095.60 kJ/kg fuel 19435.16

We can checked the calculation of the enthalpy of formation of a solid fuel:

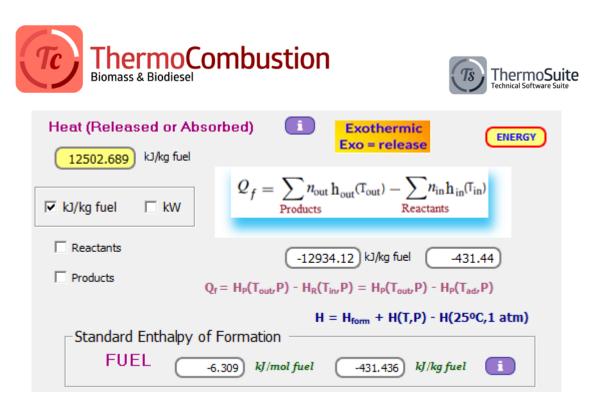
For λ =1 (neutral reaction condition):

FLUE GAS (Combustion Products)			✓ On wet basis	On dry basis
	mol/kg fuel	🗌 kg/kg fuel	Mole %	Mass %
CO ₂	30.08648	1.32410	17.1236	25.8427
H ₂ O	28.05016	0.50533	15.9647	9.8626
N ₂	117.52191	3.29220	66.8872	64.2543
SO ₂	0.01840	0.00118	0.0105	0.0230

 H_{form} (kJ/mol fuel) = PCS + n_{H2O} $H_{f}(Iiq)_{H2O}$ + n_{CO2} $H_{f}(gas)_{CO2}$ + n_{SO2} $H_{f}(gas)_{SO2}$ =

19435.16 kJ/kg fuel + 28.05016 moles H₂O/kg fuel (-285.83) kJ/mol H₂O + 30.08648 moles CO₂/kg fuel (-393.52) kJ/mol CO₂ + 0.0184 moles SO₂/kg fuel (-296.991) kJ/mol SO₂ =

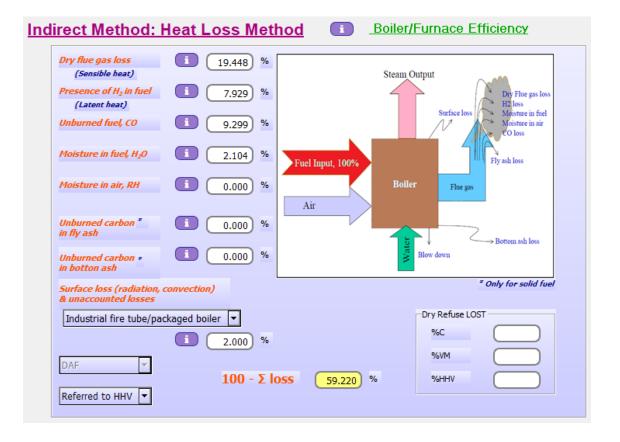
= 19434.16 - 8017.57 - 11834.63 - 5.46 = -427.5 kJ/mol fuel (approximate value to that obtained by ThermoCombustion, the differences are due to the decimals used)

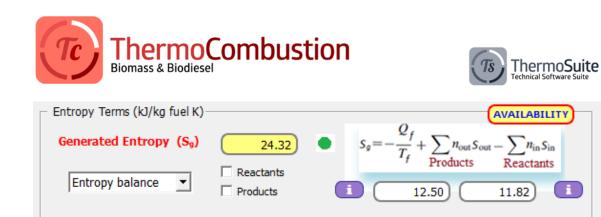


Properties of the FUEL (To=25 °C, Po=100 kPa)
Enthalpy of formation Experimental correlations Energy balance
(DAF) -431.45 kJ/kg fuel -431.44 (As received)
Absolute entropy Eiserman et al. 1980 (coal, char, ash) 💽 (Experimental expression)
(DAF) 1.5306 kJ/kg fuel K
Exergy balance
Standard chemical exergy Experimental correlations v (Experimental expression)
(DAF) 18299.40 kJ/kg fuel (13413.48) (As received)
Standard Gibbs Free Energy of Formation
(DAF) 651.72 kJ/kg fuel

H/C molar ratio	0/C molar ratio
1.4742 mol H/mol C	0.6653) mol O/mol C
Carbon content	Hydrogen content
0.3614 kg C/kg fue	0.0283) kg H/kg fuel
C/H mass ratio	N/C molar ratio
(16.2949) kg C/kg H	0.0140 mol N/mol C
Oxygen content 0.1602 kg O/kg fue	el

We can check the heat transferred to the environment:


ENERGY BALANCE: REACTANTS ? X

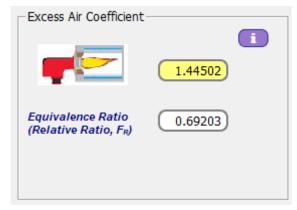

	kJ/mol	kJ/kg fuel	i
O ₂	0.000	0.000	
N ₂	0.000	0.000	Α
Ar			I
CO ₂			R
H ₂ O	0.000	0.000	
TOTAL	0.000	0.000	
Fuel			F
(DAF)	-6.309	-431.436	
Ash	0.000	0.000	E L
TOTAL	-6.309	-431.436	
TOTAL	-6.309	-431.436	(AIR+FUEL)

P	ENERGY BAL	ANCE: FLUE GAS	?	\times
		kJ/mol	kJ/kg fuel	i
	CO ₂	-360.1150	-8588.6064	
	CO	-88.8440	-554.1094	
	H₂O	-215.8420	-6054.7241	
	O ₂	0.0000	0.0000	
	N ₂	21.4600	2270.3081	
	H ₂	0.0000	0.0000	
	SO ₂	-262.7260	-4.8000	
	HCI	-88.8377	-2.1925	
	Ar	0.0000	0.0000	
	TOTAL	-994.9047	-12934.1230)

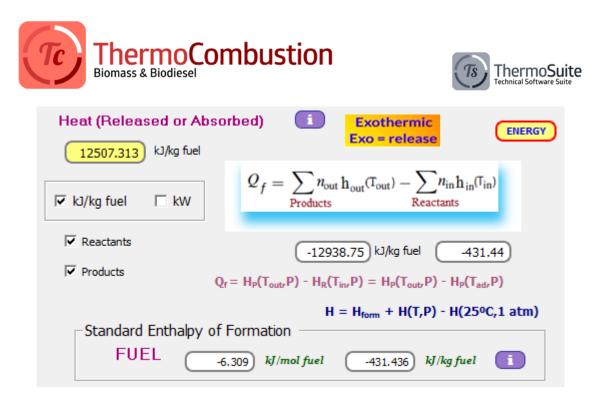
ENTROPY	BALANCE: FLUE	GAS	? ×
	J/mol K	kJ/kg fuel K	i
O ₂	218.009	6.119	
N ₂	193.462	20.426	А
Ar			Ĩ
CO ₂			R
H₂O	0.000	0.000	
TOTAL	411.471	26.545	
Fuel (DAF)	22.382	1.531	F U F
Ash	0.000	0.000	
TOTAL	22.382	1.531	
TOTAL (433.853	28.076	(AIR+FUEL)

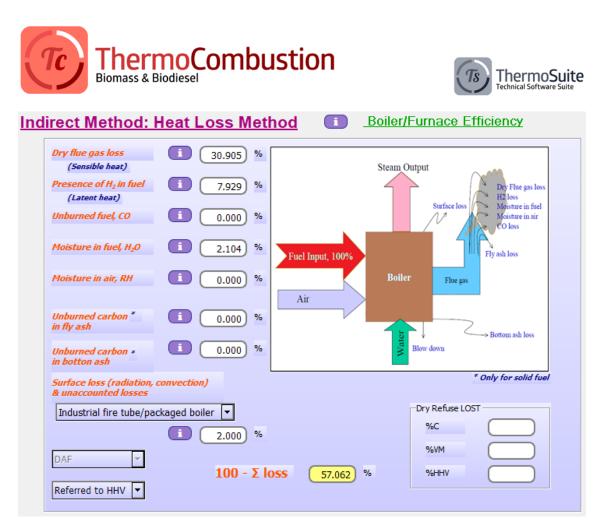
®	ENTROPY B	ALANCE: FLUE GA	s?	\times
		J/mol K	kJ/kg fuel K	i
	CO ₂	285.2448	6.8030	
	CO	261.6030	1.6316	
	H ₂ O	247.2776	6.9365	
	O ₂	0.0000	0.0000	
	N ₂	231.7007	24.5122	
	H ₂	0.0000	0.0000	
	SO ₂	358.2118	0.0065	
	HCI	307.6989	0.0076	
	Ar	0.0000	0.0000	
	TOTAL	1691.7367	39.8975)

Considering a lean mixture, with excess air:


-Air/Fuel mixture -Lean, λ>1 \Box Rich, $\lambda < 1$

FLUE GAS (Combustion Products)					
	mol/kg fuel	🗌 kg/kg fuel	Mole %	Mass %	
CO ₂	30.08648	1.32410	14.0763	20.2927	
CO					
H ₂ O					
N ₂	169.73137	4.75477	79.4107	72.8700	
O ₂	13.87781	0.44409	6.4929	6.8060	
SO ₂	0.01827	0.00117	0.0085	0.0179	
H ₂					
Ar					
HCI	0.02468	0.00090	0.0115	0.0138	
TOTAL	213.7386	6.5250	100.00 %	(100.00) %	




FLUE G	AS (Combus	On wet basis	On dry basis		
	mol/kg fuel	🗆 kg/kg fuel	Mole %	Mass %	
CO ₂	30.08648	1.32410	12.4432	18.8339	
CO					
H ₂ O	28.05165	0.50536	11.6016	7.1882	
N ₂	169.73137	4.75477	70.1978	67.6316	
O ₂	13.87781	0.44409	5.7396	6.3167	
SO ₂	0.01827	0.00117	0.0076	0.0166	
H ₂					
Ar					
HCI	0.02468	0.00090	0.0102	0.0128	
TOTAL	241.7903	7.0304	100.00 %	100.00 %	
Water Dew Point T* (and Pset) H2O (liquid) mol/mol fuel					
48.7	5 °C 11.61	kPa) % 🦳	kg/kg fuel	

We verify the heat transferred to the environment:

			i
	kJ/mol	kJ/kg fuel	
CO ₂	-360.1150	-10834.5918	
CO	0.0000	0.0000	
H ₂ O	-215.8420	-6054.7241	
O ₂	22.7070	315.1234	
N ₂	21.4600	3642.4353	
H ₂	0.0000	0.0000	
SO ₂	-262.7260	-4.8000	
HCI	-88.8377	-2.1925	
Ar	0.0000	0.0000	

There is a higher efficiency (indirect method), because there is no loss due to unburnt.

_ Entropy Terms (kJ/kg fuel K)-		AVAILABILITY
Generated Entropy (S_9)	26.93	$ S_g = -\frac{Q_f}{T_f} + \sum_{\text{Products}} n_{\text{out}} S_{\text{out}} - \sum_{\text{Reactants}} n_{\text{in}} S_{\text{in}} $
Entropy balance	 Reactants Products 	i 12.51 14.43 i

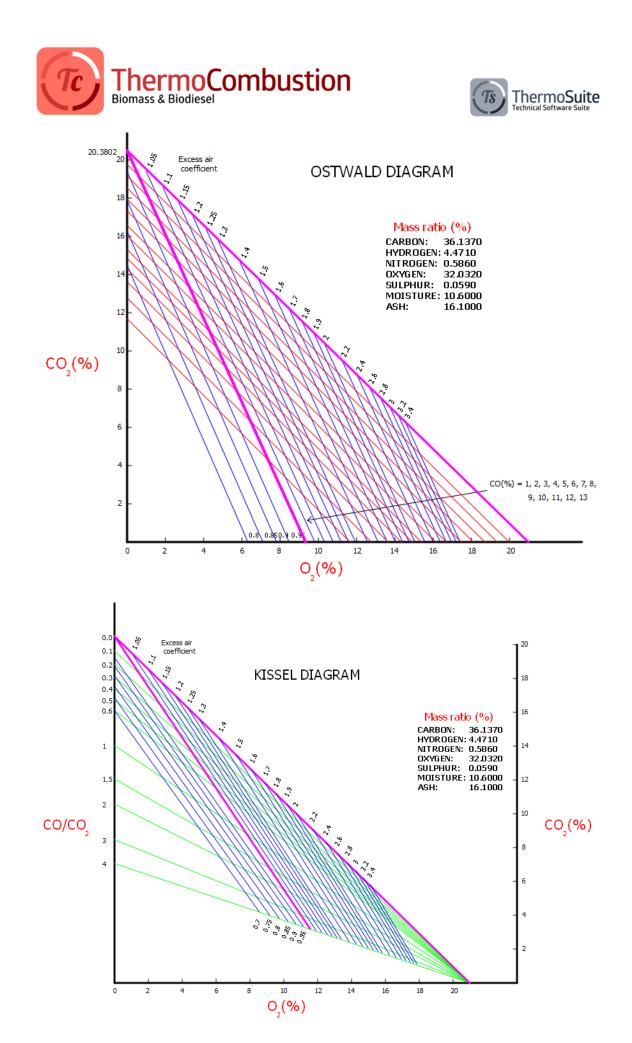
In this case, the exergy destruction is greater than in the rich mixture case.

🖲 ENTROP	ENTROPY BALANCE: FLUE GAS			
	J/mol K	kJ/kg fuel K	i	
O ₂	218.009	9.824		
N ₂	193.462	32.796	Α	
Ar			I	
CO ₂			R	
H₂O	0.000	0.000		
TOTAL	411.471	42.620		
Fuel (DAF)	22.382	1.531	F ▼ U	
Ash	0.000	0.000	E L	
TOTAL	22.382	1.531		
TOTAL	433.853	44.151	(AIR+FUEL)	

🖻 ENTROPY BALANCE: FLUE GAS 🛛 ? 🛛 🗙

	J/mol K	kJ/kg fuel K
CO ₂	286.5424	8.6211
CO	0.0000	0.0000
H ₂ O	250.5067	7.0271
O ₂	267.2321	3.7086
N ₂	230.9991	39.2078
H ₂	0.0000	0.0000
SO ₂	361.3613	0.0066
HCI	310.9607	0.0077
Ar	0.0000	0.0000
TOTAL	1707.6023	58.5789

Thermodynamic analysis of ashes:


Ash constituents and Properties of the Ash

×

?

Coal	fly ash dependent of	the region 💌		Biomass 💌	Lignitic ash	🗸 Bituminous ash
Reset	Mass ratio %	Molee Molar ratio %	cular weight /kmol)	Standard enthal (kJ/kmol)	py Standard entrop (kJ/kmol)	y Standard chemical exergy (kJ/mol)
SiO ₂	94.4800 🕂	95.8610	60.0	-911300	41.9	1.6400
Al ₂ O ₃	0.2100 +	0.1253	102.0	-1674400	51.1	4.4800
Fe ₂ O ₃	0.2200 🛨	0.0837	160.0	-825900	87.0	17.6600
CaO	0.9700 🛨	1.0545	56.0	-634600	38.8	129.8800
MgO	0.1900 ÷	0.2892	40.0	-601500	26.8	62.4200
TiO ₂	0.0200 ÷	0.0152	80.0	-945200	50.2	21.2200
Na ₂ O	0.1600 🗧	0.1571	62.0	-418200	* 75.0	296.3200
K ₂ O	2.2900 ÷	1.4831	94.0	-418200	* 102.0	412.5400
SO₃	0.9200 🛨	0.7001	80.0	-437900	257.0	242.0000
P ₂ O ₅	0.5400 🛨	0.2315	142.0	-1505990	117.0	377.1200
Others	0.0000 🛨	0.0000	44.0	-393520	214.0	20.1400
Total	100.000	100.001	60.877 kg/kmol	-903552 kJ/kmol ash	44.498 kJ/kmol ash 9	11.696 kJ/mol ash
	ature ash analysis (81!			Enthalpy of formation -14793.809 kJ/kg ash	0.731) kJ/kg ash %0	192.122 kJ/kg ash
Ratio of t	oottom ash to fly %	ash		-2381.803 kJ/kg fuel	0.118 kJ/kg fuel %	29.3761 TCO + 30.67 30.932 kJ/kg fuel
*Na ₂ O +	K ₂ O					

One of the main problems of substituting fossil fuels by biomass in power-plant boilers is the biomass ash properties. Biomass fuels usually have a high content of alkali metals, which, together with other mineral components of the ash, give rise to severe ash deposition, thereby reducing the heat transfer and inducing increased boiler tube corrosion.

