ThermoCombustion

Biomass & Biodiesel

THERMO COMBUSTION | Technical & Educational Software

 THERMO COMBUSTION (for solid and liquid fuels),

 File
 System to analyze

 FUEL selection
 Oxidizer

 Corr
 Oxidizer

 Oxidizer
 Oxidizer

 Oxidizer
 Oxidizer

 Oxidizer
 Oxidizer

Software developed for combustion processes' characterization. Major application to industrial combustion processes, such as combustion heat or electricity generation processes; whether they take place in steam generators, gas turbines or stationary engines, and in industrial furnaces (with or without fire contact).

INDEX

Characteristics

- Solid technology
- Precision
- Easy handling
- Intuitive interface
- Input variability
- Application in several industrial systems

Software capabilities

- Thermo-chemical analysis
- Mass, energy and exergetic
- balance
- Energetic flow and *Grassmann* diagram
- Thermal and exergetic efficiency
- Combustion diagrams
- Sensitivity analysis
- Pollutant emissions control

Applications

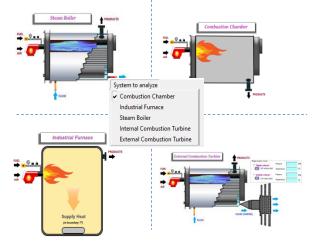
Improvement of combustion process design, comprenhensive study of main variables effect in the combustion, whether reducing irreversibilities or pollutant emissions; or performing several sensitivity analysis that *Thermocombustion* facilitates by default.

Main application in industry for process optimization or in academia (technical studios).

Characteristics

Software algorithms are based on up-to-date bibliography and the latest mathematical models, which in conjunction result in a **well-defined** and **solid technology**. The software has been set up with an **intuitive interface** that allows **easy handling**.

\lambda Input variability


Available calculations with solid (including coals, biomass and biodiesel) and liquid fuel.

1 11 11 11 11 11

1	FUEL selection				
	 Solid fossil fuel 				
	Coal sample	FATS and OILS			
1	Wood and woody biomass	FATS and OILS	l		
	Herbaceous and agricultural bioma	Soybean	1		
	Animal biomass	Canola			
	Mixture biomass	Rapeseed]		
1	Waste fuel	Palm			
5	Biodiesel (FAME)	Cottonseed			
	Liquid fuel	Beef tallow			
	Liquid fuel	Poyltry fat			
	Empirical formula	Camelina			
		Coconut			

Application in several industrial systems

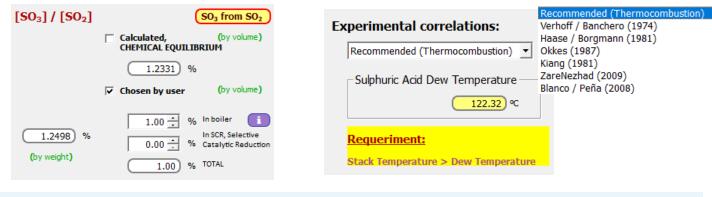
Combustion chamber, industrial furnace, steam boiler or combustion turbine (internal or external).

Industrial combustion systems available to analyse

Fuel selection features

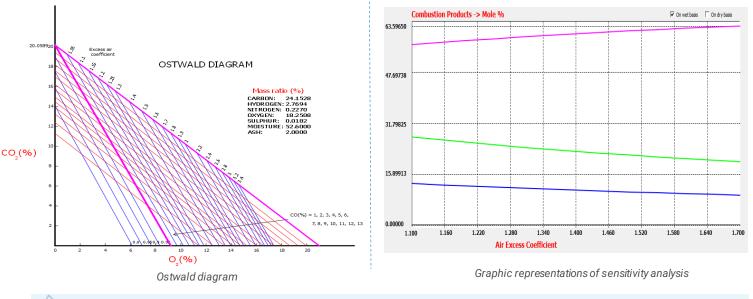
) Thermo-chemical analysis

As a first step, a **mass balance** of combustion products can be obtained. Strict analysis on whole range of **fuel properties**: calorific powers, specific heat, enthalpy of formation, chemical exergy and entropy.


<u>Molar An</u>	<u>alysis</u>	<u>Ultimate Analysis</u>		FUEL
mol/kg fuel	Molar ratio %	Mass ratio %		
20.10890	29.21354	24.1528 🛨	С	CARBON 💌
13.73779	19.95780	2.7694 🛨	H ₂	HYDROGEN 💌
0.08103	0.11772	0.2270 🛨	N ₂	NITROGEN 💌
5.70337	8.28567	18.2508 🛨	O ₂	OXYGEN 💌
0.00568	0.00825	0.0182 🛨	S	SULPHUR 💌
29.19740	42.41702	52.6000 🛨	H₂O	MOISTURE
14.52767	g/mol (as AF)	2.0000 🛨	ASH	ASH 💌
25.22910	g/mol (as DAF)	0.0091 🗧	Cl	CHLORINE
As received	• i	(100.0273) Tot	al (%)	

Composition of the fuel (ultimate analysis)

Sulphuric Acid Dew Point


When flue gas reaches a temperature below the acid dew point, acidic elements will condense. This could cause heat exchanger corrosion. Knowing the acid dew point of your flue gas enables you to select the appropriate materials for your heat recovery installation. Most of the solid fuels contain sulphur, which get readily converted to SO_x in the combustion chamber. Mainly SO_2 is formed, but part of this SO_2 (about 2-4%) oxidizes further to SO_3 . The formed SO_3 subsequently reacts with H_2O to form sulphuric acid, when the flue gas cools below the Acid Dew Point. The sulphuric acid is highly corrosive and affects susceptible equipment surfaces.

Sensitivity analysis

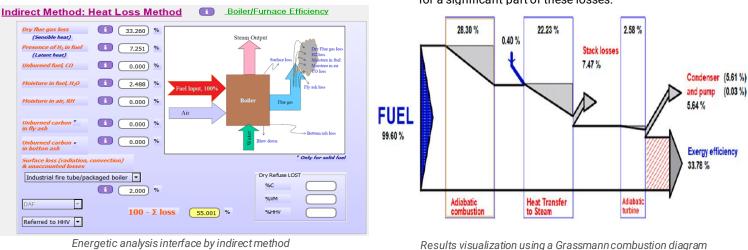
Analysis of main variables involved in the combustion processes' study. Graphical display of results and calculation of Ostwald and Kissel combustion diagrams.

Ostwald and Kissel combustion diagrams allow fast and accurate combustion calculations.

ASH

Solid fuel: exhaustive thermodynamic study related to the **composition of ashes**: molecular weight, enthalpy of formation, entropy, exergy, melting temperatures and fouling tendency among others.

Ash constituents & Properties of the ash Coal T Lignitic ash V Bituminous ash	Fusion temperatures Oxidising Reducing	
Reset Coal fly ash dependent of the region Image: Coal fly ash dependent of the region	Initial deformation T ^a 1235.88 ≤C 1193.93	Silica/alumina ratio _{SiO2} /Al ₂ O ₃ 3.065
Mass ratio % Molar rat	Softening T ^a (1252.98) ^{eC} (1211.08)	Silica ratio SR 49.309 %
AbO ₃ 20.1400 \div 14.8564 102.0 -1674400 51.1 4.4800	Hemisphere Ta (1263.76) °C (1223.61)	Total base oxide 45.470 %
Fe ₂ O ₃ 13.8300 \div 6.5036 160.0 -825900 87.0 17.6600	Flow T ^a (1283.94) ^a C (1249.72)	
CaO 9.9700 13.3956 56.0 -634600 38.8 129.8800		Total acid oxides 50.700 %
MgO 2.1400 ÷ 4.0254 40.0 -601500 26.8 62.4200	FOULING AND SLAGGING PROPENSITY OF COAL ASH	Base/acid ratio/a 0.897
TiO₂ 0.3100 ÷ 0.2916 80.0 -945200 50.2 21.2200	Attig & Duzy (U.S.) , Rb/a %Na2O in coal	
Na₂O 0.1000 ÷ 0.1214 62.0 418200 * 75.0 296.3200	Fouling index 1.624 SEVERE	Base-to-acid ratio 0.956 Rb/a+P
K₂O 1.1200 ÷ 0.8965 94.0 418200 * 102.0 412.5400	Attig & Duzy U.S.(for bituminous ashes)	
SO3 12.1100 11.3896 80.0 437900 257.0 242.0000	Slagging index 0.016	Dolomite ratio 65.554
P ₂ O ₅ 2.7500 ÷ 1.4571 142.0 −1505990 117.0 377.1200		Detrital/authigenic
Others 0.0000 0.0000 44.0 -393520 214.0 20.1400		index 1.489
High-temperature ash analysis (815 °C)		_
Total 100.000 75.241 -1025027 71.374 55.731 kg/kmol kJ/kmol ash kJ/kmol ash kJ/kmol ash kJ/mol ash	Viscosity (at 1426 °C) Multi-Viscosity Index	Alkali 0.078
Enthalpy of formation (740.701)	12.338 Poise 1.898	
(-12346.834) 0.949) kJ/kg ash Ratio of bottom ash to fly ash kJ/kg ash kJ/kg ash kJ/kg ash s℃	Reid & Cohen, 1944	Thermal conductivity
i 15 % -407.446 0.031 24.443	Critical viscosity Ta Liquidus Ta	Magdziarza et al. (biomass)
kJ/kg fuel kJ/kg fuel °C kJ/kg fuel	i 1380.42 °C i 1406.79 °C	0.658) W/m K
* Na ₂ O + K ₂ O		


Thermodynamic study interface on ashes

Energetic analysis

Includes flow diagram with energetic efficiency obtained by different methods, including indirect method on solid fuel.

Based on Second Principle, it provides information about irreversibilities generated in combustion process. The combustion process is responsible for a significant part of these losses.

Exergy analysis

Energy, Entropy, Exergy and Gibbs analysis

The results of the analysis of energy and availability balance show that the first and second laws efficiency for biomass, carbon and biodiesel fuel are useful tools to obtain the total availability, indicated work availability, the heat loss availability, burned fuel availability, other irreversibilities, etc.

EN	RGY BA	LAN	ICE: FLUE GAS	?	\times	6	ENTROPY BA	ALANCE: FLUE GA	s ? Entro Exerg
			kJ/mol	kJ/kg fuel	i			kJ/mol K	Gibbs
	CO ₂	Г	-360,1150	-7241.5278			CO ₂	288.5716	346.2859
	-						CO2	262.9121	105.1648
	CO		0.0000	0.0000				253.4695	
	H₂O		-215.8420	-9266.9404			H₂O		253.4695
	O2		22.7070	289.9259			O ₂	273.3625	92.3957
	N ₂	Г	21.4600	2750.4668			N ₂	230.5037	2114.0701
	H ₂	Г	0.0000	0.0000			H ₂	0.0000	0.0000
	-	Ē					SO ₂	316.7540	63.3508
	SO ₂		-262.7260	-1.4923			Ar	0.0000	0.0000
	HC		-88.1093	-0.2176			He	316.7540	63.3508
	Ar		0.0000	0.0000			unburned	0.0000	0.0000
7	OTAL	C	-882.6253	-13469.7861			TOTAL	1625.5732	2974.7368
				Heat released 7.66 %		<mark>Useful Energy</mark> 92.34 %	Air	Adiabatic combustion chamber	Heat exchanger T _{ad} T _{pro}
	/					Results visuali.	zation using	a Sankey combus	stion diagram

6 Pollutant emissions control

Includes critical pollutants as carbon monoxide (CO), nitrogen oxides (NO, NO2) or sulfur dioxide (SO2), ash, among others.

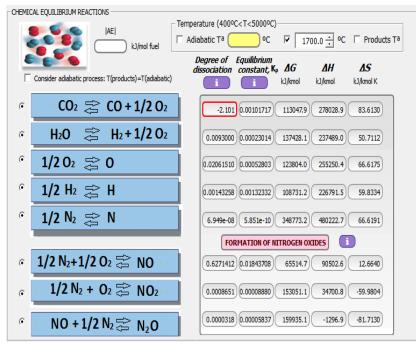
To reduce the amount of hazardous air pollutants emitted by commercial and industrial boilers, it is necessary to know exactly and completely the behavior of a certain fuel when it is subjected to a reactive process, in order to act effectively through a control mechanism.

For example, while replacing a significant amount of coal with wood would reduce sulfur emissions, the effect on other pollutants is not straightforward.

	02	SO ₂	NO		
Global	Warming	Acid Rain	Smog and Acid Rain N ₂ O ₄ Smog and Acid Rain		
NO ₂		N ₂ O			
Smog and Acid H	Rain Glob	al Warming			
СО	Particulat	te matter, fly	ash		
Health Effects		Smog			

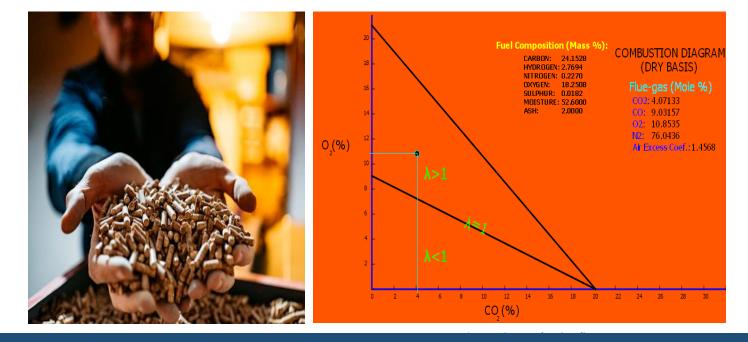
Pollutant emissions

In summary, *Thermocombustion (for biomass and biodiesel)* provides a complete solution of combustion processes; analysing the effect of the main variables that participate in the process, through the possibility of performing a graphical sensitivity analysis.


Whole range of software capabilities facilitates an improvement in combustion process design, an exhaustive study of main variables effects, and the possibility to reduce irreversibilities or pollutant emissions. A final report (set up by the user) can be submitted, containing graphs and predictions.

Major application for process optimization in industry or combustion processes study in academia.

Application specifications


This software's capabilities are appropriate for combustion studies in academia. The features explained above are highly useful. Moreover, a prediction of **thermodynamic properties** of combustion products and **equilibrium composition** can be obtained.

Theoretical determination of the **equilibrium composition** and **thermodynamic properties** of combustion products, related to temperature and pressure, as well as the dosage used or the fuel gas mixture, according to chemical balance and dissociation.

Composition analysis of combustion products on chemical equilibrium

For product-related and techical questions:

https://thermosuite.com/thermocombustion-bb

Email: info@thermosuite.com